--- title: "Comparison with other R packages" output: rmarkdown::html_vignette description: | Speed and result comparison with other R packages. vignette: > %\VignetteIndexEntry{Comparison with other R packages} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Data setup ## Univariate mean change ```r # Univariate mean change set.seed(1) p <- 1 mean_data_1 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(400, mean = rep(50, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(2, p), sigma = diag(100, p)) ) plot.ts(mean_data_1) ``` ![plot of chunk data-setup-univariate-mean-change](figure/data-setup-univariate-mean-change-1.png) ## Univariate mean and/or variance change ```r # Univariate mean and/or variance change set.seed(1) p <- 1 mv_data_1 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(10, p), sigma = diag(100, p)) ) plot.ts(mv_data_1) ``` ![plot of chunk data-setup-univariate-mean-and-or-variance-change](figure/data-setup-univariate-mean-and-or-variance-change-1.png) ## Multivariate mean change ```r # Multivariate mean change set.seed(1) p <- 3 mean_data_3 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(400, mean = rep(50, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(2, p), sigma = diag(100, p)) ) plot.ts(mean_data_3) ``` ![plot of chunk data-setup-multivariate-mean-change](figure/data-setup-multivariate-mean-change-1.png) ## Multivariate mean and/or variance change ```r # Multivariate mean and/or variance change set.seed(1) p <- 4 mv_data_3 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(10, p), sigma = diag(100, p)) ) plot.ts(mv_data_3) ``` ![plot of chunk data-setup-multivariate-mean-and-or-variance-change](figure/data-setup-multivariate-mean-and-or-variance-change-1.png) ## Linear regression ```r # Linear regression set.seed(1) n <- 300 p <- 4 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) theta_0 <- rbind(c(1, 3.2, -1, 0), c(-1, -0.5, 2.5, -2), c(0.8, 0, 1, 2)) y <- c( x[1:100, ] %*% theta_0[1, ] + rnorm(100, 0, 3), x[101:200, ] %*% theta_0[2, ] + rnorm(100, 0, 3), x[201:n, ] %*% theta_0[3, ] + rnorm(100, 0, 3) ) lm_data <- data.frame(y = y, x = x) plot.ts(lm_data) ``` ![plot of chunk data-setup-linear-regression](figure/data-setup-linear-regression-1.png) ## Logistic regression ```r # Logistic regression set.seed(1) n <- 500 p <- 4 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) theta <- rbind(rnorm(p, 0, 1), rnorm(p, 2, 1)) y <- c( rbinom(300, 1, 1 / (1 + exp(-x[1:300, ] %*% theta[1, ]))), rbinom(200, 1, 1 / (1 + exp(-x[301:n, ] %*% theta[2, ]))) ) binomial_data <- data.frame(y = y, x = x) plot.ts(binomial_data) ``` ![plot of chunk data-setup-logistic-regression](figure/data-setup-logistic-regression-1.png) ## Poisson regression ```r # Poisson regression set.seed(1) n <- 1100 p <- 3 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) delta <- rnorm(p) theta_0 <- c(1, 0.3, -1) y <- c( rpois(500, exp(x[1:500, ] %*% theta_0)), rpois(300, exp(x[501:800, ] %*% (theta_0 + delta))), rpois(200, exp(x[801:1000, ] %*% theta_0)), rpois(100, exp(x[1001:1100, ] %*% (theta_0 - delta))) ) poisson_data <- data.frame(y = y, x = x) plot.ts(log(poisson_data$y)) ``` ![plot of chunk data-setup-poisson-regression](figure/data-setup-poisson-regression-1.png) ```r plot.ts(poisson_data[, -1]) ``` ![plot of chunk data-setup-poisson-regression](figure/data-setup-poisson-regression-2.png) ## Lasso ```r # Lasso set.seed(1) n <- 480 p_true <- 6 p <- 50 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) theta_0 <- rbind( runif(p_true, -5, -2), runif(p_true, -3, 3), runif(p_true, 2, 5), runif(p_true, -5, 5) ) theta_0 <- cbind(theta_0, matrix(0, ncol = p - p_true, nrow = 4)) y <- c( x[1:80, ] %*% theta_0[1, ] + rnorm(80, 0, 1), x[81:200, ] %*% theta_0[2, ] + rnorm(120, 0, 1), x[201:320, ] %*% theta_0[3, ] + rnorm(120, 0, 1), x[321:n, ] %*% theta_0[4, ] + rnorm(160, 0, 1) ) lasso_data <- data.frame(y = y, x = x) plot.ts(lasso_data[, seq_len(p_true + 1)]) ``` ![plot of chunk data-setup-lasso](figure/data-setup-lasso-1.png) ## AR(3) ```r # AR(3) set.seed(1) n <- 1000 x <- rep(0, n + 3) for (i in 1:600) { x[i + 3] <- 0.6 * x[i + 2] - 0.2 * x[i + 1] + 0.1 * x[i] + rnorm(1, 0, 3) } for (i in 601:1000) { x[i + 3] <- 0.3 * x[i + 2] + 0.4 * x[i + 1] + 0.2 * x[i] + rnorm(1, 0, 3) } ar_data <- x[-seq_len(3)] plot.ts(ar_data) ``` ![plot of chunk data-setup-ar3](figure/data-setup-ar3-1.png) ## GARCH(1, 1) ```r # GARCH(1, 1) set.seed(1) n <- 400 sigma_2 <- rep(1, n + 1) x <- rep(0, n + 1) for (i in seq_len(200)) { sigma_2[i + 1] <- 20 + 0.5 * x[i]^2 + 0.1 * sigma_2[i] x[i + 1] <- rnorm(1, 0, sqrt(sigma_2[i + 1])) } for (i in 201:400) { sigma_2[i + 1] <- 1 + 0.1 * x[i]^2 + 0.5 * sigma_2[i] x[i + 1] <- rnorm(1, 0, sqrt(sigma_2[i + 1])) } garch_data <- x[-1] plot.ts(garch_data) ``` ![plot of chunk data-setup-garch11](figure/data-setup-garch11-1.png) ## VAR(2) ```r # VAR(2) set.seed(1) n <- 800 p <- 2 theta_1 <- matrix(c(-0.3, 0.6, -0.5, 0.4, 0.2, 0.2, 0.2, -0.2), nrow = p) theta_2 <- matrix(c(0.3, -0.4, 0.1, -0.5, -0.5, -0.2, -0.5, 0.2), nrow = p) x <- matrix(0, n + 2, p) for (i in 1:500) { x[i + 2, ] <- theta_1 %*% c(x[i + 1, ], x[i, ]) + rnorm(p, 0, 1) } for (i in 501:n) { x[i + 2, ] <- theta_2 %*% c(x[i + 1, ], x[i, ]) + rnorm(p, 0, 1) } var_data <- x[-seq_len(2), ] plot.ts(var_data) ``` ![plot of chunk data-setup-var2](figure/data-setup-var2-1.png) # Univariate mean change The true change points are 300 and 700. Some methods are plotted due to the un-retrievable change points. ```r results[["mean_data_1"]][["fastcpd"]] <- fastcpd::fastcpd.mean(mean_data_1, r.progress = FALSE)@cp_set ``` ```r results[["mean_data_1"]][["fastcpd"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["CptNonPar"]] <- CptNonPar::np.mojo(mean_data_1, G = floor(length(mean_data_1) / 6))$cpts ``` ```r results[["mean_data_1"]][["CptNonPar"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["strucchange"]] <- strucchange::breakpoints(y ~ 1, data = data.frame(y = mean_data_1))$breakpoints ``` ```r results[["mean_data_1"]][["strucchange"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["ecp"]] <- ecp::e.divisive(mean_data_1)$estimates ``` ```r results[["mean_data_1"]][["ecp"]] #> [1] 1 301 701 1001 ``` ```r results[["mean_data_1"]][["changepoint"]] <- changepoint::cpt.mean(c(mean_data_1))@cpts ``` ```r results[["mean_data_1"]][["changepoint"]] #> [1] 300 1000 ``` ```r results[["mean_data_1"]][["breakfast"]] <- breakfast::breakfast(mean_data_1)$cptmodel.list[[6]]$cpts ``` ```r results[["mean_data_1"]][["breakfast"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["wbs"]] <- wbs::wbs(mean_data_1)$cpt$cpt.ic$mbic.penalty ``` ```r results[["mean_data_1"]][["wbs"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["mosum"]] <- mosum::mosum(c(mean_data_1), G = 40)$cpts.info$cpts ``` ```r results[["mean_data_1"]][["mosum"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["fpop"]] <- fpop::Fpop(mean_data_1, nrow(mean_data_1))$t.est ``` ```r results[["mean_data_1"]][["fpop"]] #> [1] 300 700 1000 ``` ```r results[["mean_data_1"]][["gfpop"]] <- gfpop::gfpop( data = mean_data_1, mygraph = gfpop::graph( penalty = 2 * log(nrow(mean_data_1)) * gfpop::sdDiff(mean_data_1) ^ 2, type = "updown" ), type = "mean" )$changepoints ``` ```r results[["mean_data_1"]][["gfpop"]] #> [1] 300 700 1000 ``` ```r results[["mean_data_1"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mean_data_1), threshold = InspectChangepoint::compute.threshold( nrow(mean_data_1), ncol(mean_data_1) ) )$changepoints[, "location"] ``` ```r results[["mean_data_1"]][["InspectChangepoint"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["jointseg"]] <- jointseg::jointSeg(mean_data_1, K = 2)$bestBkp ``` ```r results[["mean_data_1"]][["jointseg"]] #> [1] 300 700 ``` ```r results[["mean_data_1"]][["Rbeast"]] <- Rbeast::beast( mean_data_1, season = "none", print.progress = FALSE, quiet = TRUE )$trend$cp ``` ```r results[["mean_data_1"]][["Rbeast"]] #> [1] 701 301 NaN NaN NaN NaN NaN NaN NaN NaN ``` ```r results[["mean_data_1"]][["stepR"]] <- stepR::stepFit(mean_data_1, alpha = 0.5)$rightEnd ``` ```r results[["mean_data_1"]][["stepR"]] #> [1] 300 700 1000 ``` ```r results[["mean_data_1"]][["cpm"]] <- cpm::processStream(mean_data_1, cpmType = "Student")$changePoints ``` ```r results[["mean_data_1"]][["cpm"]] #> [1] 299 699 ``` ```r results[["mean_data_1"]][["segmented"]] <- segmented::stepmented( as.numeric(mean_data_1), npsi = 2 )$psi[, "Est."] ``` ```r results[["mean_data_1"]][["segmented"]] #> psi1.index psi2.index #> 298.1981 699.1524 ``` ```r results[["mean_data_1"]][["mcp"]] <- mcp::mcp( list(y ~ 1, ~ 1, ~ 1), data = data.frame(y = mean_data_1, x = seq_len(nrow(mean_data_1))), par_x = "x" ) ``` ```r if (requireNamespace("mcp", quietly = TRUE)) { plot(results[["mean_data_1"]][["mcp"]]) } ``` ![plot of chunk univariate-mean-change-mcp-result](figure/univariate-mean-change-mcp-result-1.png) ```r results[["mean_data_1"]][["not"]] <- not::not(mean_data_1, contrast = "pcwsConstMean") ``` ```r if (requireNamespace("not", quietly = TRUE)) { plot(results[["mean_data_1"]][["not"]]) } ``` ![plot of chunk univariate-mean-change-not-result](figure/univariate-mean-change-not-result-1.png) ```r results[["mean_data_1"]][["bcp"]] <- bcp::bcp(mean_data_1) ``` ```r if (requireNamespace("bcp", quietly = TRUE)) { plot(results[["mean_data_1"]][["bcp"]]) } ``` ![plot of chunk univariate-mean-change-bcp-result](figure/univariate-mean-change-bcp-result-1.png) # Univariate mean and/or variance change The true change points are 300, 700, 1000, 1300 and 1700. Some methods are plotted due to the un-retrievable change points. ```r results[["mv_data_1"]][["fastcpd"]] <- fastcpd::fastcpd.mv(mv_data_1, r.progress = FALSE)@cp_set ``` ```r results[["mv_data_1"]][["fastcpd"]] #> [1] 300 700 1001 1300 1700 ``` ```r results[["mv_data_1"]][["ecp"]] <- ecp::e.divisive(mv_data_1)$estimates ``` ```r results[["mv_data_1"]][["ecp"]] #> [1] 1 301 701 1001 1301 1701 2001 ``` ```r results[["mv_data_1"]][["changepoint"]] <- changepoint::cpt.meanvar(c(mv_data_1))@cpts ``` ```r results[["mv_data_1"]][["changepoint"]] #> [1] 300 2000 ``` ```r results[["mv_data_1"]][["CptNonPar"]] <- CptNonPar::np.mojo(mv_data_1, G = floor(length(mv_data_1) / 6))$cpts ``` ```r results[["mv_data_1"]][["CptNonPar"]] #> [1] 333 700 1300 ``` ```r results[["mv_data_1"]][["cpm"]] <- cpm::processStream(mv_data_1, cpmType = "GLR")$changePoints ``` ```r results[["mv_data_1"]][["cpm"]] #> [1] 293 300 403 408 618 621 696 1000 1021 1024 1293 1300 1417 1693 1700 #> [16] 1981 ``` ```r results[["mv_data_1"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mv_data_1), threshold = InspectChangepoint::compute.threshold( nrow(mv_data_1), ncol(mv_data_1) ) )$changepoints[, "location"] ``` ```r results[["mv_data_1"]][["InspectChangepoint"]] #> [1] 300 700 701 702 704 707 708 712 715 716 717 718 721 722 723 #> [16] 726 727 729 731 732 734 736 740 742 744 746 748 750 753 755 #> [31] 756 757 759 760 762 764 765 766 768 769 771 772 774 776 777 #> [46] 784 785 786 789 791 792 794 797 798 799 801 802 803 807 809 #> [61] 810 813 815 817 819 826 827 828 829 831 833 835 836 837 838 #> [76] 840 841 842 843 845 848 849 852 854 860 862 864 866 868 870 #> [91] 872 875 879 881 884 886 887 888 889 896 897 898 899 901 903 #> [106] 904 905 906 909 910 912 913 915 917 919 921 922 923 925 927 #> [121] 928 932 934 936 937 940 944 945 947 948 949 951 956 958 959 #> [136] 961 962 963 964 966 967 968 972 974 976 978 979 986 988 990 #> [151] 992 995 998 1000 1300 1700 1702 1703 1704 1705 1708 1710 1712 1714 1716 #> [166] 1717 1718 1720 1721 1723 1725 1726 1727 1729 1731 1733 1735 1736 1737 1739 #> [181] 1742 1745 1747 1748 1752 1754 1756 1758 1759 1760 1766 1768 1770 1771 1773 #> [196] 1775 1778 1782 1784 1785 1790 1792 1793 1795 1796 1797 1799 1800 1802 1803 #> [211] 1804 1805 1806 1807 1808 1809 1813 1815 1816 1818 1821 1824 1825 1827 1828 #> [226] 1829 1833 1835 1837 1840 1841 1842 1848 1849 1851 1852 1854 1855 1857 1859 #> [241] 1860 1862 1863 1865 1867 1868 1876 1878 1879 1880 1882 1883 1884 1886 1887 #> [256] 1889 1894 1898 1899 1905 1906 1907 1908 1909 1912 1919 1920 1921 1923 1924 #> [271] 1926 1927 1928 1930 1933 1934 1935 1936 1938 1940 1941 1944 1947 1950 1952 #> [286] 1954 1955 1956 1960 1962 1963 1965 1966 1967 1969 1970 1974 1976 1977 1978 #> [301] 1980 1985 1987 1988 1990 1996 1997 1998 ``` ```r results[["mv_data_1"]][["Rbeast"]] <- Rbeast::beast( mv_data_1, season = "none", print.progress = FALSE, quiet = TRUE )$trend$cp ``` ```r results[["mv_data_1"]][["Rbeast"]] #> [1] 1855 1794 1301 1986 301 703 1981 1769 1860 709 ``` ```r results[["mv_data_1"]][["mcp"]] <- mcp::mcp( list(y ~ 1, ~ 1, ~ 1, ~ 1, ~ 1, ~ 1), data = data.frame(y = mv_data_1, x = seq_len(nrow(mv_data_1))), par_x = "x" ) ``` ```r if (requireNamespace("mcp", quietly = TRUE)) { plot(results[["mv_data_1"]][["mcp"]]) } ``` ![plot of chunk univariate-mean-and-or-variance-change-mcp-result](figure/univariate-mean-and-or-variance-change-mcp-result-1.png) ```r results[["mv_data_1"]][["not"]] <- not::not(mv_data_1, contrast = "pcwsConstMeanVar") ``` ```r if (requireNamespace("not", quietly = TRUE)) { plot(results[["mv_data_1"]][["not"]]) } ``` ![plot of chunk univariate-mean-and-or-variance-change-not-result](figure/univariate-mean-and-or-variance-change-not-result-1.png) ``` #> Press [enter] to continue ``` ![plot of chunk univariate-mean-and-or-variance-change-not-result](figure/univariate-mean-and-or-variance-change-not-result-2.png) # Multivariate mean change The true change points are 300 and 700. Some methods are plotted due to the un-retrievable change points. ```r results[["mean_data_3"]][["fastcpd"]] <- fastcpd::fastcpd.mean(mean_data_3, r.progress = FALSE)@cp_set ``` ```r results[["mean_data_3"]][["fastcpd"]] #> [1] 300 700 ``` ```r results[["mean_data_3"]][["CptNonPar"]] <- CptNonPar::np.mojo(mean_data_3, G = floor(nrow(mean_data_3) / 6))$cpts ``` ```r results[["mean_data_3"]][["CptNonPar"]] #> [1] 300 700 ``` ```r results[["mean_data_3"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mean_data_3), threshold = InspectChangepoint::compute.threshold( nrow(mean_data_3), ncol(mean_data_3) ) )$changepoints[, "location"] ``` ```r results[["mean_data_3"]][["InspectChangepoint"]] #> [1] 300 700 ``` ```r results[["mean_data_3"]][["jointseg"]] <- jointseg::jointSeg(mean_data_3, K = 2)$bestBkp ``` ```r results[["mean_data_3"]][["jointseg"]] #> [1] 300 700 ``` ```r results[["mean_data_3"]][["Rbeast"]] <- Rbeast::beast123( mean_data_3, metadata = list(whichDimIsTime = 1), season = "none" )$trend$cp ``` ```r results[["mean_data_3"]][["Rbeast"]] #> [,1] [,2] [,3] #> [1,] 301 701 301 #> [2,] 701 301 701 #> [3,] 142 117 926 #> [4,] 305 NaN NaN #> [5,] 705 NaN NaN #> [6,] 694 NaN NaN #> [7,] NaN NaN NaN #> [8,] NaN NaN NaN #> [9,] NaN NaN NaN #> [10,] NaN NaN NaN ``` ```r results[["mean_data_3"]][["strucchange"]] <- strucchange::breakpoints( cbind(y.1, y.2, y.3) ~ 1, data = data.frame(y = mean_data_3) )$breakpoints ``` ```r results[["mean_data_3"]][["strucchange"]] #> [1] 300 700 ``` ```r results[["mean_data_3"]][["ecp"]] <- ecp::e.divisive(mean_data_3)$estimates ``` ```r results[["mean_data_3"]][["ecp"]] #> [1] 1 301 701 1001 ``` ```r results[["mean_data_3"]][["bcp"]] <- bcp::bcp(mean_data_3) ``` ```r if (requireNamespace("bcp", quietly = TRUE)) { plot(results[["mean_data_3"]][["bcp"]]) } ``` ![plot of chunk multivariate-mean-change-bcp-result](figure/multivariate-mean-change-bcp-result-1.png) # Multivariate mean and/or variance change The true change points are 300, 700, 1000, 1300 and 1700. Some methods are plotted due to the un-retrievable change points. ```r results[["mv_data_3"]][["fastcpd"]] <- fastcpd::fastcpd.mv(mv_data_3, r.progress = FALSE)@cp_set ``` ```r results[["mv_data_3"]][["fastcpd"]] #> [1] 300 700 1000 1300 1700 ``` ```r results[["mv_data_3"]][["ecp"]] <- ecp::e.divisive(mv_data_3)$estimates ``` ```r results[["mv_data_3"]][["ecp"]] #> [1] 1 301 701 1001 1301 1701 2001 ``` ```r results[["mv_data_3"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mv_data_3), threshold = InspectChangepoint::compute.threshold( nrow(mv_data_3), ncol(mv_data_3) ) )$changepoints[, "location"] ``` ```r results[["mv_data_3"]][["InspectChangepoint"]] #> [1] 300 700 701 703 705 707 708 709 711 712 714 715 717 718 720 #> [16] 721 723 724 726 727 729 731 733 734 736 737 739 740 742 743 #> [31] 744 746 747 749 750 752 753 754 755 756 758 760 762 763 765 #> [46] 766 767 769 770 772 773 774 775 777 779 780 782 784 786 788 #> [61] 790 791 793 795 797 799 801 803 804 806 809 810 811 813 814 #> [76] 816 817 818 820 821 823 825 827 828 830 831 833 835 836 837 #> [91] 838 840 842 843 845 846 848 849 850 852 853 854 855 856 858 #> [106] 859 860 862 863 865 866 868 869 871 872 874 876 877 878 879 #> [121] 881 883 885 887 888 889 891 893 894 895 897 898 900 901 903 #> [136] 904 906 908 909 911 913 914 916 917 918 920 921 923 924 925 #> [151] 927 928 929 931 932 934 936 937 938 939 941 942 943 945 946 #> [166] 947 949 950 952 954 955 956 957 958 959 961 962 964 965 967 #> [181] 968 970 972 973 974 975 977 979 981 982 984 985 986 987 988 #> [196] 990 991 992 994 995 997 999 1000 1300 1700 1702 1703 1704 1705 1706 #> [211] 1708 1709 1710 1712 1713 1714 1715 1717 1719 1721 1722 1723 1725 1727 1729 #> [226] 1730 1732 1734 1735 1737 1738 1739 1741 1742 1744 1746 1748 1750 1752 1753 #> [241] 1754 1755 1757 1758 1759 1761 1762 1763 1764 1766 1767 1769 1770 1771 1773 #> [256] 1774 1775 1777 1779 1781 1782 1783 1785 1786 1788 1789 1791 1793 1794 1796 #> [271] 1798 1800 1803 1804 1805 1806 1808 1809 1811 1812 1814 1815 1817 1818 1819 #> [286] 1821 1822 1824 1825 1827 1828 1829 1831 1833 1835 1836 1838 1839 1841 1843 #> [301] 1844 1846 1847 1848 1850 1851 1853 1854 1856 1857 1858 1859 1860 1862 1863 #> [316] 1864 1865 1867 1869 1870 1872 1873 1874 1876 1878 1879 1881 1882 1884 1885 #> [331] 1887 1889 1891 1893 1894 1896 1898 1899 1900 1901 1902 1904 1906 1907 1909 #> [346] 1911 1913 1914 1916 1917 1918 1919 1921 1923 1924 1925 1927 1928 1930 1932 #> [361] 1933 1935 1936 1938 1939 1941 1942 1944 1946 1948 1950 1951 1952 1954 1956 #> [376] 1957 1959 1961 1963 1965 1967 1968 1970 1972 1973 1974 1976 1977 1979 1981 #> [391] 1982 1984 1985 1987 1989 1990 1992 1993 1995 1996 1998 ``` ```r results[["mv_data_3"]][["Rbeast"]] <- Rbeast::beast123( mv_data_3, metadata = list(whichDimIsTime = 1), season = "none" )$trend$cp ``` ```r results[["mv_data_3"]][["Rbeast"]] #> [,1] [,2] [,3] [,4] #> [1,] 701 1301 301 1301 #> [2,] 1301 301 1301 710 #> [3,] 301 701 1829 301 #> [4,] 1968 1993 702 886 #> [5,] 1994 884 1822 1975 #> [6,] 814 755 810 1915 #> [7,] 1962 781 845 778 #> [8,] 1978 767 1738 1985 #> [9,] 1870 747 1754 792 #> [10,] 1843 722 771 953 ``` # Linear regression The true change points are 100 and 200. ```r results[["lm_data"]][["fastcpd"]] <- fastcpd::fastcpd.lm(lm_data, r.progress = FALSE)@cp_set ``` ```r results[["lm_data"]][["fastcpd"]] #> [1] 97 201 ``` ```r results[["lm_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = lm_data)$breakpoints ``` ```r results[["lm_data"]][["strucchange"]] #> [1] 100 201 ``` ```r results[["lm_data"]][["segmented"]] <- segmented::segmented( lm( y ~ . - 1, data.frame(y = lm_data$y, x = lm_data[, -1], index = seq_len(nrow(lm_data))) ), seg.Z = ~ index )$psi[, "Est."] ``` ```r results[["lm_data"]][["segmented"]] #> [1] 233 ``` # Logistic regression The true change point is 300. ```r results[["binomial_data"]][["fastcpd"]] <- fastcpd::fastcpd.binomial(binomial_data, r.progress = FALSE)@cp_set ``` ```r results[["binomial_data"]][["fastcpd"]] #> [1] 302 ``` ```r results[["binomial_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = binomial_data)$breakpoints ``` ```r results[["binomial_data"]][["strucchange"]] #> [1] 297 ``` # Poisson regression The true change points are 500, 800 and 1000. ```r results[["poisson_data"]][["fastcpd"]] <- fastcpd::fastcpd.poisson(poisson_data, r.progress = FALSE)@cp_set ``` ```r results[["poisson_data"]][["fastcpd"]] #> [1] 498 805 1003 ``` ```r results[["poisson_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = poisson_data)$breakpoints ``` ```r results[["poisson_data"]][["strucchange"]] #> [1] 935 ``` # Lasso The true change points are 80, 200 and 320. ```r results[["lasso_data"]][["fastcpd"]] <- fastcpd::fastcpd.lasso(lasso_data, r.progress = FALSE)@cp_set ``` ```r results[["lasso_data"]][["fastcpd"]] #> [1] 79 199 321 ``` ```r results[["lasso_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = lasso_data)$breakpoints ``` ```r results[["lasso_data"]][["strucchange"]] #> [1] 80 200 321 ``` # AR(3) The true change point is 600. Some methods are plotted due to the un-retrievable change points. ```r results[["ar_data"]][["fastcpd"]] <- fastcpd::fastcpd.ar(ar_data, 3, r.progress = FALSE)@cp_set ``` ```r results[["ar_data"]][["fastcpd"]] #> [1] 614 ``` ```r results[["ar_data"]][["CptNonPar"]] <- CptNonPar::np.mojo(ar_data, G = floor(length(ar_data) / 6))$cpts ``` ```r results[["ar_data"]][["CptNonPar"]] #> numeric(0) ``` ```r results[["ar_data"]][["segmented"]] <- segmented::segmented( lm( y ~ x + 1, data.frame(y = ar_data, x = seq_along(ar_data)) ), seg.Z = ~ x )$psi[, "Est."] ``` ```r results[["ar_data"]][["segmented"]] #> [1] 690 ``` ```r results[["ar_data"]][["mcp"]] <- mcp::mcp( list(y ~ 1 + ar(3), ~ 0 + ar(3)), data = data.frame(y = ar_data, x = seq_along(ar_data)), par_x = "x" ) ``` ```r if (requireNamespace("mcp", quietly = TRUE)) { plot(results[["ar_data"]][["mcp"]]) } ``` ![plot of chunk ar3-mcp-result](figure/ar3-mcp-result-1.png) # GARCH(1, 1) The true change point is 200. ```r results[["garch_data"]][["fastcpd"]] <- fastcpd::fastcpd.garch(garch_data, c(1, 1), r.progress = FALSE)@cp_set ``` ```r results[["garch_data"]][["fastcpd"]] #> [1] 205 ``` ```r results[["garch_data"]][["CptNonPar"]] <- CptNonPar::np.mojo(garch_data, G = floor(length(garch_data) / 6))$cpts ``` ```r results[["garch_data"]][["CptNonPar"]] #> [1] 206 ``` ```r results[["garch_data"]][["strucchange"]] <- strucchange::breakpoints(x ~ 1, data = data.frame(x = garch_data))$breakpoints ``` ```r results[["garch_data"]][["strucchange"]] #> [1] NA ``` # VAR(2) The true change points is 500. ```r results[["var_data"]][["fastcpd"]] <- fastcpd::fastcpd.var(var_data, 2, r.progress = FALSE)@cp_set ``` ```r results[["var_data"]][["fastcpd"]] #> [1] 500 ``` ```r results[["var_data"]][["VARDetect"]] <- VARDetect::tbss(var_data)$cp ``` ```r results[["var_data"]][["VARDetect"]] #> [1] 501 ``` # Detection comparison using `well_log` ```r well_log <- fastcpd::well_log ``` ```r well_log <- well_log[well_log > 1e5] results[["well_log"]] <- list( fastcpd = fastcpd.mean(well_log, trim = 0.003)@cp_set, changepoint = changepoint::cpt.mean(well_log)@cpts, CptNonPar = CptNonPar::np.mojo(well_log, G = floor(length(well_log) / 6))$cpts, strucchange = strucchange::breakpoints( y ~ 1, data = data.frame(y = well_log) )$breakpoints, ecp = ecp::e.divisive(matrix(well_log))$estimates, breakfast = breakfast::breakfast(well_log)$cptmodel.list[[6]]$cpts, wbs = wbs::wbs(well_log)$cpt$cpt.ic$mbic.penalty, mosum = mosum::mosum(c(well_log), G = 40)$cpts.info$cpts, # fpop = fpop::Fpop(well_log, length(well_log))$t.est, # meaningless gfpop = gfpop::gfpop( data = well_log, mygraph = gfpop::graph( penalty = 2 * log(length(well_log)) * gfpop::sdDiff(well_log) ^ 2, type = "updown" ), type = "mean" )$changepoints, InspectChangepoint = InspectChangepoint::inspect( well_log, threshold = InspectChangepoint::compute.threshold(length(well_log), 1) )$changepoints[, "location"], jointseg = jointseg::jointSeg(well_log, K = 12)$bestBkp, Rbeast = Rbeast::beast( well_log, season = "none", print.progress = FALSE, quiet = TRUE )$trend$cp, stepR = stepR::stepFit(well_log, alpha = 0.5)$rightEnd ) ``` ```r results[["well_log"]] #> $fastcpd #> [1] 12 572 704 776 1021 1057 1198 1347 1406 1502 1660 1842 2023 2202 2384 #> [16] 2445 2507 2567 2749 2926 3094 3107 3509 3622 3709 3820 3976 #> #> $changepoint #> [1] 2738 3989 #> #> $CptNonPar #> [1] 1021 1681 2022 2738 #> #> $strucchange #> [1] 1057 1660 2568 3283 #> #> $ecp #> [1] 1 33 315 435 567 705 803 1026 1058 1348 1503 1662 1843 2024 2203 #> [16] 2386 2446 2508 2569 2745 2780 2922 3073 3136 3252 3465 3500 3554 3623 3710 #> [31] 3821 3868 3990 #> #> $breakfast #> [1] 33 310 434 572 704 779 1021 1057 1347 1502 1659 1842 2021 2032 2202 #> [16] 2384 2446 2507 2567 2747 2779 2926 3094 3106 3125 3283 3464 3499 3622 3709 #> [31] 3806 3835 3848 3877 3896 3976 #> #> $wbs #> [1] 2568 1057 1661 1842 2385 2023 2445 1502 2744 6 2507 1021 3709 3820 1402 #> [16] 434 1408 3131 3976 3509 3622 776 1197 3094 704 3104 1347 314 2921 3251 #> [31] 3464 3848 3906 2779 1663 3636 60 3904 2202 566 12 3639 1200 7 1671 #> [46] 706 #> #> $mosum #> [1] 6 434 704 1017 1057 1325 1502 1661 1842 2023 2385 2445 2507 2567 2744 #> [16] 3060 3438 3509 3610 3697 3820 3867 3976 #> #> $gfpop #> [1] 6 7 8 12 314 434 556 560 704 776 1021 1057 1197 1200 1347 #> [16] 1364 1405 1407 1491 1502 1661 1842 2023 2385 2445 2507 2567 2664 2747 2752 #> [31] 2921 3094 3104 3125 3251 3464 3499 3622 3709 3820 3976 3989 #> #> $InspectChangepoint #> [1] 6 8 15 71 314 434 521 704 706 776 830 1021 1057 1059 1347 #> [16] 1402 1405 1408 1412 1502 1520 1659 1661 1663 1694 1842 1848 2022 2202 2384 #> [31] 2387 2445 2507 2567 2568 2673 2738 2746 2752 2779 2921 3131 3251 3464 3509 #> [46] 3609 3658 3709 3806 3976 #> #> $jointseg #> [1] 6 1021 1057 1502 1661 1842 2022 2384 2445 2507 2568 2738 #> #> $Rbeast #> [1] 1058 1662 7 1022 2447 2386 2023 1503 2745 3710 #> #> $stepR #> [1] 7 14 314 434 566 704 776 1021 1057 1197 1200 1347 1405 1407 1502 #> [16] 1661 1694 1842 2023 2202 2385 2445 2507 2567 2747 2752 2921 3094 3104 3125 #> [31] 3251 3464 3499 3609 3658 3709 3820 3867 3905 3976 3989 ``` ```r package_list <- sort(names(results[["well_log"]]), decreasing = TRUE) comparison_table <- NULL for (package_index in seq_along(package_list)) { package <- package_list[[package_index]] comparison_table <- rbind( comparison_table, data.frame( change_point = results[["well_log"]][[package]], package = package, y_offset = (package_index - 1) * 1000 ) ) } most_selected <- sort(table(comparison_table$change_point), decreasing = TRUE) most_selected <- sort(as.numeric(names(most_selected[most_selected >= 4]))) for (i in seq_len(length(most_selected) - 1)) { if (most_selected[i + 1] - most_selected[i] < 2) { most_selected[i] <- NA most_selected[i + 1] <- most_selected[i + 1] - 0.5 } } (most_selected <- most_selected[!is.na(most_selected)]) #> [1] 6.5 314.0 434.0 704.0 776.0 1021.0 1057.0 1347.0 1502.0 1661.0 #> [11] 1842.0 2023.0 2202.0 2384.5 2445.0 2507.0 2567.5 2738.0 2921.0 3094.0 #> [21] 3251.0 3464.0 3509.0 3622.0 3709.0 3820.0 3976.0 ``` ```r if (requireNamespace("ggplot2", quietly = TRUE)) { ggplot2::ggplot() + ggplot2::geom_point( data = data.frame(x = seq_along(well_log), y = c(well_log)), ggplot2::aes(x = x, y = y) ) + ggplot2::geom_vline( xintercept = most_selected, color = "black", linetype = "dashed", alpha = 0.2 ) + ggplot2::geom_point( data = comparison_table, ggplot2::aes(x = change_point, y = 50000 + y_offset, color = package), shape = 17, size = 1.9 ) + ggplot2::geom_hline( data = comparison_table, ggplot2::aes(yintercept = 50000 + y_offset, color = package), linetype = "dashed", alpha = 0.1 ) + ggplot2::coord_cartesian( ylim = c(50000 - 500, max(well_log) + 1000), xlim = c(-200, length(well_log) + 200), expand = FALSE ) + ggplot2::theme( panel.background = ggplot2::element_blank(), panel.border = ggplot2::element_rect(colour = "black", fill = NA), panel.grid.major = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank() ) + ggplot2::xlab(NULL) + ggplot2::ylab(NULL) } ``` ![plot of chunk detection-comparison-well-log-plot](figure/detection-comparison-well-log-plot-1.png) # Time comparison using `well_log` ```r results[["microbenchmark"]] <- microbenchmark::microbenchmark( fastcpd = fastcpd::fastcpd.mean(well_log, trim = 0.003, r.progress = FALSE), changepoint = changepoint::cpt.mean(well_log, method = "PELT"), CptNonPar = CptNonPar::np.mojo(well_log, G = floor(length(well_log) / 6)), strucchange = strucchange::breakpoints(y ~ 1, data = data.frame(y = well_log)), ecp = ecp::e.divisive(matrix(well_log)), breakfast = breakfast::breakfast(well_log), wbs = wbs::wbs(well_log), mosum = mosum::mosum(c(well_log), G = 40), fpop = fpop::Fpop(well_log, nrow(well_log)), gfpop = gfpop::gfpop( data = well_log, mygraph = gfpop::graph( penalty = 2 * log(length(well_log)) * gfpop::sdDiff(well_log) ^ 2, type = "updown" ), type = "mean" ), InspectChangepoint = InspectChangepoint::inspect( well_log, threshold = InspectChangepoint::compute.threshold(length(well_log), 1) ), jointseg = jointseg::jointSeg(well_log, K = 12), Rbeast = Rbeast::beast( well_log, season = "none", print.progress = FALSE, quiet = TRUE ), stepR = stepR::stepFit(well_log, alpha = 0.5), not = not::not(well_log, contrast = "pcwsConstMean"), times = 10 ) ``` ```r results[["microbenchmark"]] #> Unit: milliseconds #> expr min lq mean median #> fastcpd 6.257120e+01 6.696175e+01 7.183964e+01 7.168669e+01 #> changepoint 3.205076e+01 3.305076e+01 4.025595e+01 3.774400e+01 #> CptNonPar 1.875995e+04 2.014073e+04 2.244910e+04 2.224506e+04 #> strucchange 6.359889e+04 6.409690e+04 6.651444e+04 6.565439e+04 #> ecp 7.505232e+05 7.895889e+05 8.168647e+05 8.170952e+05 #> breakfast 9.606171e+03 9.819381e+03 1.052611e+04 1.048197e+04 #> wbs 1.163237e+02 1.180537e+02 1.263443e+02 1.254133e+02 #> mosum 1.059973e+00 1.147898e+00 2.175931e+00 1.409396e+00 #> fpop 2.604002e+00 3.676689e+00 4.859312e+00 4.308841e+00 #> gfpop 6.057383e+01 6.595090e+01 7.277643e+01 7.212125e+01 #> InspectChangepoint 1.584727e+02 2.171007e+02 2.414921e+02 2.424665e+02 #> jointseg 2.104403e+01 2.284920e+01 3.577861e+01 2.708083e+01 #> Rbeast 6.545716e+02 6.913542e+02 7.993305e+02 7.504324e+02 #> stepR 2.740003e+01 3.020269e+01 3.149624e+01 3.188329e+01 #> not 9.715867e+01 1.000287e+02 1.101258e+02 1.074475e+02 #> uq max neval #> 7.689381e+01 8.332375e+01 10 #> 4.669485e+01 5.904173e+01 10 #> 2.380236e+04 2.705807e+04 10 #> 6.597650e+04 7.757488e+04 10 #> 8.259550e+05 8.834288e+05 10 #> 1.103289e+04 1.197235e+04 10 #> 1.276892e+02 1.455261e+02 10 #> 1.957312e+00 8.705062e+00 10 #> 5.107175e+00 1.085365e+01 10 #> 7.742432e+01 8.794816e+01 10 #> 3.060519e+02 3.145695e+02 10 #> 4.362760e+01 9.516090e+01 10 #> 8.539695e+02 1.163607e+03 10 #> 3.294534e+01 3.530981e+01 10 #> 1.147504e+02 1.331989e+02 10 ``` ```r if (requireNamespace("ggplot2", quietly = TRUE) && requireNamespace("microbenchmark", quietly = TRUE)) { ggplot2::autoplot(results[["microbenchmark"]]) } ``` ![plot of chunk time-comparison-well-log-plot](figure/time-comparison-well-log-plot-1.png) # Notes This document is generated by the following code: ```shell R -e 'knitr::knit("vignettes/comparison-packages.Rmd.original", output = "vignettes/comparison-packages.Rmd")' && rm -rf vignettes/figure && mv -f figure vignettes ``` # Related issues - `mosum`: [[#4](https://github.com/doccstat/fastcpd/issues/4)]. - `mcp`: [link 1](https://github.com/doccstat/fastcpd/actions/runs/7272426093/job/19814531091) and [link 2](https://github.com/doccstat/fastcpd/actions/runs/7272426093/job/19814531284). - `bcp`: [[#5](https://github.com/doccstat/fastcpd/issues/5)]. - `gfpop`: [[#10](https://github.com/doccstat/fastcpd/issues/10)]. # Acknowledgements - [Dr. Vito Muggeo](https://www.unipa.it/persone/docenti/m/vito.muggeo), author of the `segmented` package for the tips about the piece-wise constant function. # Appendix: all code snippets ```r knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = TRUE, cache = FALSE, warning = FALSE, fig.width = 8, fig.height = 5 ) if (requireNamespace("microbenchmark", quietly = TRUE)) { library(microbenchmark) } if (file.exists("comparison-packages-results.RData")) { # Available at https://pcloud.xingchi.li/comparison-packages-results.RData load("comparison-packages-results.RData") } else { results <- list() } # Univariate mean change set.seed(1) p <- 1 mean_data_1 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(400, mean = rep(50, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(2, p), sigma = diag(100, p)) ) plot.ts(mean_data_1) # Univariate mean and/or variance change set.seed(1) p <- 1 mv_data_1 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(10, p), sigma = diag(100, p)) ) plot.ts(mv_data_1) # Multivariate mean change set.seed(1) p <- 3 mean_data_3 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(400, mean = rep(50, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(2, p), sigma = diag(100, p)) ) plot.ts(mean_data_3) # Multivariate mean and/or variance change set.seed(1) p <- 4 mv_data_3 <- rbind( mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(100, p)), mvtnorm::rmvnorm(300, mean = rep(0, p), sigma = diag(1, p)), mvtnorm::rmvnorm(400, mean = rep(10, p), sigma = diag(1, p)), mvtnorm::rmvnorm(300, mean = rep(10, p), sigma = diag(100, p)) ) plot.ts(mv_data_3) # Linear regression set.seed(1) n <- 300 p <- 4 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) theta_0 <- rbind(c(1, 3.2, -1, 0), c(-1, -0.5, 2.5, -2), c(0.8, 0, 1, 2)) y <- c( x[1:100, ] %*% theta_0[1, ] + rnorm(100, 0, 3), x[101:200, ] %*% theta_0[2, ] + rnorm(100, 0, 3), x[201:n, ] %*% theta_0[3, ] + rnorm(100, 0, 3) ) lm_data <- data.frame(y = y, x = x) plot.ts(lm_data) # Logistic regression set.seed(1) n <- 500 p <- 4 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) theta <- rbind(rnorm(p, 0, 1), rnorm(p, 2, 1)) y <- c( rbinom(300, 1, 1 / (1 + exp(-x[1:300, ] %*% theta[1, ]))), rbinom(200, 1, 1 / (1 + exp(-x[301:n, ] %*% theta[2, ]))) ) binomial_data <- data.frame(y = y, x = x) plot.ts(binomial_data) # Poisson regression set.seed(1) n <- 1100 p <- 3 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) delta <- rnorm(p) theta_0 <- c(1, 0.3, -1) y <- c( rpois(500, exp(x[1:500, ] %*% theta_0)), rpois(300, exp(x[501:800, ] %*% (theta_0 + delta))), rpois(200, exp(x[801:1000, ] %*% theta_0)), rpois(100, exp(x[1001:1100, ] %*% (theta_0 - delta))) ) poisson_data <- data.frame(y = y, x = x) plot.ts(log(poisson_data$y)) plot.ts(poisson_data[, -1]) # Lasso set.seed(1) n <- 480 p_true <- 6 p <- 50 x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p)) theta_0 <- rbind( runif(p_true, -5, -2), runif(p_true, -3, 3), runif(p_true, 2, 5), runif(p_true, -5, 5) ) theta_0 <- cbind(theta_0, matrix(0, ncol = p - p_true, nrow = 4)) y <- c( x[1:80, ] %*% theta_0[1, ] + rnorm(80, 0, 1), x[81:200, ] %*% theta_0[2, ] + rnorm(120, 0, 1), x[201:320, ] %*% theta_0[3, ] + rnorm(120, 0, 1), x[321:n, ] %*% theta_0[4, ] + rnorm(160, 0, 1) ) lasso_data <- data.frame(y = y, x = x) plot.ts(lasso_data[, seq_len(p_true + 1)]) # AR(3) set.seed(1) n <- 1000 x <- rep(0, n + 3) for (i in 1:600) { x[i + 3] <- 0.6 * x[i + 2] - 0.2 * x[i + 1] + 0.1 * x[i] + rnorm(1, 0, 3) } for (i in 601:1000) { x[i + 3] <- 0.3 * x[i + 2] + 0.4 * x[i + 1] + 0.2 * x[i] + rnorm(1, 0, 3) } ar_data <- x[-seq_len(3)] plot.ts(ar_data) # GARCH(1, 1) set.seed(1) n <- 400 sigma_2 <- rep(1, n + 1) x <- rep(0, n + 1) for (i in seq_len(200)) { sigma_2[i + 1] <- 20 + 0.5 * x[i]^2 + 0.1 * sigma_2[i] x[i + 1] <- rnorm(1, 0, sqrt(sigma_2[i + 1])) } for (i in 201:400) { sigma_2[i + 1] <- 1 + 0.1 * x[i]^2 + 0.5 * sigma_2[i] x[i + 1] <- rnorm(1, 0, sqrt(sigma_2[i + 1])) } garch_data <- x[-1] plot.ts(garch_data) # VAR(2) set.seed(1) n <- 800 p <- 2 theta_1 <- matrix(c(-0.3, 0.6, -0.5, 0.4, 0.2, 0.2, 0.2, -0.2), nrow = p) theta_2 <- matrix(c(0.3, -0.4, 0.1, -0.5, -0.5, -0.2, -0.5, 0.2), nrow = p) x <- matrix(0, n + 2, p) for (i in 1:500) { x[i + 2, ] <- theta_1 %*% c(x[i + 1, ], x[i, ]) + rnorm(p, 0, 1) } for (i in 501:n) { x[i + 2, ] <- theta_2 %*% c(x[i + 1, ], x[i, ]) + rnorm(p, 0, 1) } var_data <- x[-seq_len(2), ] plot.ts(var_data) results[["mean_data_1"]][["fastcpd"]] <- fastcpd::fastcpd.mean(mean_data_1, r.progress = FALSE)@cp_set results[["mean_data_1"]][["fastcpd"]] testthat::expect_equal(results[["mean_data_1"]][["fastcpd"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["CptNonPar"]] <- CptNonPar::np.mojo(mean_data_1, G = floor(length(mean_data_1) / 6))$cpts results[["mean_data_1"]][["CptNonPar"]] testthat::expect_equal(results[["mean_data_1"]][["CptNonPar"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["strucchange"]] <- strucchange::breakpoints(y ~ 1, data = data.frame(y = mean_data_1))$breakpoints results[["mean_data_1"]][["strucchange"]] testthat::expect_equal(results[["mean_data_1"]][["strucchange"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["ecp"]] <- ecp::e.divisive(mean_data_1)$estimates results[["mean_data_1"]][["ecp"]] testthat::expect_equal(results[["mean_data_1"]][["ecp"]], c(1, 301, 701, 1001), tolerance = 0.2) results[["mean_data_1"]][["changepoint"]] <- changepoint::cpt.mean(c(mean_data_1))@cpts results[["mean_data_1"]][["changepoint"]] testthat::expect_equal(results[["mean_data_1"]][["changepoint"]], c(300, 1000), tolerance = 0.2) results[["mean_data_1"]][["breakfast"]] <- breakfast::breakfast(mean_data_1)$cptmodel.list[[6]]$cpts results[["mean_data_1"]][["breakfast"]] testthat::expect_equal(results[["mean_data_1"]][["breakfast"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["wbs"]] <- wbs::wbs(mean_data_1)$cpt$cpt.ic$mbic.penalty results[["mean_data_1"]][["wbs"]] testthat::expect_equal(results[["mean_data_1"]][["wbs"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["mosum"]] <- mosum::mosum(c(mean_data_1), G = 40)$cpts.info$cpts results[["mean_data_1"]][["mosum"]] testthat::expect_equal(results[["mean_data_1"]][["mosum"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["fpop"]] <- fpop::Fpop(mean_data_1, nrow(mean_data_1))$t.est results[["mean_data_1"]][["fpop"]] testthat::expect_equal(results[["mean_data_1"]][["fpop"]], c(300, 700, 1000), tolerance = 0.2) results[["mean_data_1"]][["gfpop"]] <- gfpop::gfpop( data = mean_data_1, mygraph = gfpop::graph( penalty = 2 * log(nrow(mean_data_1)) * gfpop::sdDiff(mean_data_1) ^ 2, type = "updown" ), type = "mean" )$changepoints results[["mean_data_1"]][["gfpop"]] testthat::expect_equal(results[["mean_data_1"]][["gfpop"]], c(300, 700, 1000), tolerance = 0.2) results[["mean_data_1"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mean_data_1), threshold = InspectChangepoint::compute.threshold( nrow(mean_data_1), ncol(mean_data_1) ) )$changepoints[, "location"] results[["mean_data_1"]][["InspectChangepoint"]] testthat::expect_equal(results[["mean_data_1"]][["InspectChangepoint"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["jointseg"]] <- jointseg::jointSeg(mean_data_1, K = 2)$bestBkp results[["mean_data_1"]][["jointseg"]] testthat::expect_equal(results[["mean_data_1"]][["jointseg"]], c(300, 700), tolerance = 0.2) results[["mean_data_1"]][["Rbeast"]] <- Rbeast::beast( mean_data_1, season = "none", print.progress = FALSE, quiet = TRUE )$trend$cp results[["mean_data_1"]][["Rbeast"]] testthat::expect_equal(results[["mean_data_1"]][["Rbeast"]], c(701, 301, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN), tolerance = 0.2) results[["mean_data_1"]][["stepR"]] <- stepR::stepFit(mean_data_1, alpha = 0.5)$rightEnd results[["mean_data_1"]][["stepR"]] testthat::expect_equal(results[["mean_data_1"]][["stepR"]], c(300, 700, 1000), tolerance = 0.2) results[["mean_data_1"]][["cpm"]] <- cpm::processStream(mean_data_1, cpmType = "Student")$changePoints results[["mean_data_1"]][["cpm"]] testthat::expect_equal(results[["mean_data_1"]][["cpm"]], c(299, 699), tolerance = 0.2) results[["mean_data_1"]][["segmented"]] <- segmented::stepmented( as.numeric(mean_data_1), npsi = 2 )$psi[, "Est."] results[["mean_data_1"]][["segmented"]] testthat::expect_equal(results[["mean_data_1"]][["segmented"]], c(298, 699), ignore_attr = TRUE, tolerance = 0.2) results[["mean_data_1"]][["mcp"]] <- mcp::mcp( list(y ~ 1, ~ 1, ~ 1), data = data.frame(y = mean_data_1, x = seq_len(nrow(mean_data_1))), par_x = "x" ) if (requireNamespace("mcp", quietly = TRUE)) { plot(results[["mean_data_1"]][["mcp"]]) } results[["mean_data_1"]][["not"]] <- not::not(mean_data_1, contrast = "pcwsConstMean") if (requireNamespace("not", quietly = TRUE)) { plot(results[["mean_data_1"]][["not"]]) } results[["mean_data_1"]][["bcp"]] <- bcp::bcp(mean_data_1) if (requireNamespace("bcp", quietly = TRUE)) { plot(results[["mean_data_1"]][["bcp"]]) } results[["mv_data_1"]][["fastcpd"]] <- fastcpd::fastcpd.mv(mv_data_1, r.progress = FALSE)@cp_set results[["mv_data_1"]][["fastcpd"]] testthat::expect_equal(results[["mv_data_1"]][["fastcpd"]], c(300, 700, 1001, 1300, 1700), tolerance = 0.2) results[["mv_data_1"]][["ecp"]] <- ecp::e.divisive(mv_data_1)$estimates results[["mv_data_1"]][["ecp"]] testthat::expect_equal(results[["mv_data_1"]][["ecp"]], c(1, 301, 701, 1001, 1301, 1701, 2001), tolerance = 0.2) results[["mv_data_1"]][["changepoint"]] <- changepoint::cpt.meanvar(c(mv_data_1))@cpts results[["mv_data_1"]][["changepoint"]] testthat::expect_equal(results[["mv_data_1"]][["changepoint"]], c(300, 2000), tolerance = 0.2) results[["mv_data_1"]][["CptNonPar"]] <- CptNonPar::np.mojo(mv_data_1, G = floor(length(mv_data_1) / 6))$cpts results[["mv_data_1"]][["CptNonPar"]] testthat::expect_equal(results[["mv_data_1"]][["CptNonPar"]], c(333, 700, 1300), tolerance = 0.2) results[["mv_data_1"]][["cpm"]] <- cpm::processStream(mv_data_1, cpmType = "GLR")$changePoints results[["mv_data_1"]][["cpm"]] testthat::expect_equal(results[["mv_data_1"]][["cpm"]], c(293, 300, 403, 408, 618, 621, 696, 1000, 1021, 1024, 1293, 1300, 1417, 1693, 1700, 1981), tolerance = 0.2) results[["mv_data_1"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mv_data_1), threshold = InspectChangepoint::compute.threshold( nrow(mv_data_1), ncol(mv_data_1) ) )$changepoints[, "location"] results[["mv_data_1"]][["InspectChangepoint"]] testthat::expect_equal(results[["mv_data_1"]][["InspectChangepoint"]], c( 300, 700, 701, 702, 704, 707, 708, 712, 715, 716, 717, 718, 721, 722, 723, 726, 727, 729, 731, 732, 734, 736, 740, 742, 744, 746, 748, 750, 753, 755, 756, 757, 759, 760, 762, 764, 765, 766, 768, 769, 771, 772, 774, 776, 777, 784, 785, 786, 789, 791, 792, 794, 797, 798, 799, 801, 802, 803, 807, 809, 810, 813, 815, 817, 819, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 840, 841, 842, 843, 845, 848, 849, 852, 854, 860, 862, 864, 866, 868, 870, 872, 875, 879, 881, 884, 886, 887, 888, 889, 896, 897, 898, 899, 901, 903, 904, 905, 906, 909, 910, 912, 913, 915, 917, 919, 921, 922, 923, 925, 927, 928, 932, 934, 936, 937, 940, 944, 945, 947, 948, 949, 951, 956, 958, 959, 961, 962, 963, 964, 966, 967, 968, 972, 974, 976, 978, 979, 986, 988, 990, 992, 995, 998, 1000, 1300, 1700, 1702, 1703, 1704, 1705, 1708, 1710, 1712, 1714, 1716, 1717, 1718, 1720, 1721, 1723, 1725, 1726, 1727, 1729, 1731, 1733, 1735, 1736, 1737, 1739, 1742, 1745, 1747, 1748, 1752, 1754, 1756, 1758, 1759, 1760, 1766, 1768, 1770, 1771, 1773, 1775, 1778, 1782, 1784, 1785, 1790, 1792, 1793, 1795, 1796, 1797, 1799, 1800, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1813, 1815, 1816, 1818, 1821, 1824, 1825, 1827, 1828, 1829, 1833, 1835, 1837, 1840, 1841, 1842, 1848, 1849, 1851, 1852, 1854, 1855, 1857, 1859, 1860, 1862, 1863, 1865, 1867, 1868, 1876, 1878, 1879, 1880, 1882, 1883, 1884, 1886, 1887, 1889, 1894, 1898, 1899, 1905, 1906, 1907, 1908, 1909, 1912, 1919, 1920, 1921, 1923, 1924, 1926, 1927, 1928, 1930, 1933, 1934, 1935, 1936, 1938, 1940, 1941, 1944, 1947, 1950, 1952, 1954, 1955, 1956, 1960, 1962, 1963, 1965, 1966, 1967, 1969, 1970, 1974, 1976, 1977, 1978, 1980, 1985, 1987, 1988, 1990, 1996, 1997, 1998 ), tolerance = 0.2) results[["mv_data_1"]][["Rbeast"]] <- Rbeast::beast( mv_data_1, season = "none", print.progress = FALSE, quiet = TRUE )$trend$cp results[["mv_data_1"]][["Rbeast"]] testthat::expect_equal(results[["mv_data_1"]][["Rbeast"]], c(1855, 1794, 1301, 1986, 301, 703, 1981, 1769, 1860, 709), tolerance = 0.2) results[["mv_data_1"]][["mcp"]] <- mcp::mcp( list(y ~ 1, ~ 1, ~ 1, ~ 1, ~ 1, ~ 1), data = data.frame(y = mv_data_1, x = seq_len(nrow(mv_data_1))), par_x = "x" ) if (requireNamespace("mcp", quietly = TRUE)) { plot(results[["mv_data_1"]][["mcp"]]) } results[["mv_data_1"]][["not"]] <- not::not(mv_data_1, contrast = "pcwsConstMeanVar") if (requireNamespace("not", quietly = TRUE)) { plot(results[["mv_data_1"]][["not"]]) } results[["mean_data_3"]][["fastcpd"]] <- fastcpd::fastcpd.mean(mean_data_3, r.progress = FALSE)@cp_set results[["mean_data_3"]][["fastcpd"]] testthat::expect_equal(results[["mean_data_3"]][["fastcpd"]], c(300, 700), tolerance = 0.2) results[["mean_data_3"]][["CptNonPar"]] <- CptNonPar::np.mojo(mean_data_3, G = floor(nrow(mean_data_3) / 6))$cpts results[["mean_data_3"]][["CptNonPar"]] testthat::expect_equal(results[["mean_data_3"]][["CptNonPar"]], c(300, 700), tolerance = 0.2) results[["mean_data_3"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mean_data_3), threshold = InspectChangepoint::compute.threshold( nrow(mean_data_3), ncol(mean_data_3) ) )$changepoints[, "location"] results[["mean_data_3"]][["InspectChangepoint"]] testthat::expect_equal(results[["mean_data_3"]][["InspectChangepoint"]], c(300, 700), tolerance = 0.2) results[["mean_data_3"]][["jointseg"]] <- jointseg::jointSeg(mean_data_3, K = 2)$bestBkp results[["mean_data_3"]][["jointseg"]] testthat::expect_equal(results[["mean_data_3"]][["jointseg"]], c(300, 700), tolerance = 0.2) results[["mean_data_3"]][["Rbeast"]] <- Rbeast::beast123( mean_data_3, metadata = list(whichDimIsTime = 1), season = "none" )$trend$cp results[["mean_data_3"]][["Rbeast"]] testthat::expect_equal(results[["mean_data_3"]][["Rbeast"]], matrix(c( 301, 701, 301, 701, 301, 701, 142, 117, 926, 305, NaN, NaN, 705, NaN, NaN, 694, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN ), nrow = 10, ncol = 3, byrow = TRUE), tolerance = 0.2) results[["mean_data_3"]][["strucchange"]] <- strucchange::breakpoints( cbind(y.1, y.2, y.3) ~ 1, data = data.frame(y = mean_data_3) )$breakpoints results[["mean_data_3"]][["strucchange"]] testthat::expect_equal(results[["mean_data_3"]][["strucchange"]], c(300, 700), tolerance = 0.2) results[["mean_data_3"]][["ecp"]] <- ecp::e.divisive(mean_data_3)$estimates results[["mean_data_3"]][["ecp"]] testthat::expect_equal(results[["mean_data_3"]][["ecp"]], c(1, 301, 701, 1001), tolerance = 0.2) results[["mean_data_3"]][["bcp"]] <- bcp::bcp(mean_data_3) if (requireNamespace("bcp", quietly = TRUE)) { plot(results[["mean_data_3"]][["bcp"]]) } results[["mv_data_3"]][["fastcpd"]] <- fastcpd::fastcpd.mv(mv_data_3, r.progress = FALSE)@cp_set results[["mv_data_3"]][["fastcpd"]] testthat::expect_equal(results[["mv_data_3"]][["fastcpd"]], c(300, 700, 1000, 1300, 1700), tolerance = 0.2) results[["mv_data_3"]][["ecp"]] <- ecp::e.divisive(mv_data_3)$estimates results[["mv_data_3"]][["ecp"]] testthat::expect_equal(results[["mv_data_3"]][["ecp"]], c(1, 301, 701, 1001, 1301, 1701, 2001), tolerance = 0.2) results[["mv_data_3"]][["InspectChangepoint"]] <- InspectChangepoint::inspect( t(mv_data_3), threshold = InspectChangepoint::compute.threshold( nrow(mv_data_3), ncol(mv_data_3) ) )$changepoints[, "location"] results[["mv_data_3"]][["InspectChangepoint"]] testthat::expect_equal(results[["mv_data_3"]][["InspectChangepoint"]], c( 300, 700, 701, 703, 705, 707, 708, 709, 711, 712, 714, 715, 717, 718, 720, 721, 723, 724, 726, 727, 729, 731, 733, 734, 736, 737, 739, 740, 742, 743, 744, 746, 747, 749, 750, 752, 753, 754, 755, 756, 758, 760, 762, 763, 765, 766, 767, 769, 770, 772, 773, 774, 775, 777, 779, 780, 782, 784, 786, 788, 790, 791, 793, 795, 797, 799, 801, 803, 804, 806, 809, 810, 811, 813, 814, 816, 817, 818, 820, 821, 823, 825, 827, 828, 830, 831, 833, 835, 836, 837, 838, 840, 842, 843, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 860, 862, 863, 865, 866, 868, 869, 871, 872, 874, 876, 877, 878, 879, 881, 883, 885, 887, 888, 889, 891, 893, 894, 895, 897, 898, 900, 901, 903, 904, 906, 908, 909, 911, 913, 914, 916, 917, 918, 920, 921, 923, 924, 925, 927, 928, 929, 931, 932, 934, 936, 937, 938, 939, 941, 942, 943, 945, 946, 947, 949, 950, 952, 954, 955, 956, 957, 958, 959, 961, 962, 964, 965, 967, 968, 970, 972, 973, 974, 975, 977, 979, 981, 982, 984, 985, 986, 987, 988, 990, 991, 992, 994, 995, 997, 999, 1000, 1300, 1700, 1702, 1703, 1704, 1705, 1706, 1708, 1709, 1710, 1712, 1713, 1714, 1715, 1717, 1719, 1721, 1722, 1723, 1725, 1727, 1729, 1730, 1732, 1734, 1735, 1737, 1738, 1739, 1741, 1742, 1744, 1746, 1748, 1750, 1752, 1753, 1754, 1755, 1757, 1758, 1759, 1761, 1762, 1763, 1764, 1766, 1767, 1769, 1770, 1771, 1773, 1774, 1775, 1777, 1779, 1781, 1782, 1783, 1785, 1786, 1788, 1789, 1791, 1793, 1794, 1796, 1798, 1800, 1803, 1804, 1805, 1806, 1808, 1809, 1811, 1812, 1814, 1815, 1817, 1818, 1819, 1821, 1822, 1824, 1825, 1827, 1828, 1829, 1831, 1833, 1835, 1836, 1838, 1839, 1841, 1843, 1844, 1846, 1847, 1848, 1850, 1851, 1853, 1854, 1856, 1857, 1858, 1859, 1860, 1862, 1863, 1864, 1865, 1867, 1869, 1870, 1872, 1873, 1874, 1876, 1878, 1879, 1881, 1882, 1884, 1885, 1887, 1889, 1891, 1893, 1894, 1896, 1898, 1899, 1900, 1901, 1902, 1904, 1906, 1907, 1909, 1911, 1913, 1914, 1916, 1917, 1918, 1919, 1921, 1923, 1924, 1925, 1927, 1928, 1930, 1932, 1933, 1935, 1936, 1938, 1939, 1941, 1942, 1944, 1946, 1948, 1950, 1951, 1952, 1954, 1956, 1957, 1959, 1961, 1963, 1965, 1967, 1968, 1970, 1972, 1973, 1974, 1976, 1977, 1979, 1981, 1982, 1984, 1985, 1987, 1989, 1990, 1992, 1993, 1995, 1996, 1998 ), tolerance = 0.2) results[["mv_data_3"]][["Rbeast"]] <- Rbeast::beast123( mv_data_3, metadata = list(whichDimIsTime = 1), season = "none" )$trend$cp results[["mv_data_3"]][["Rbeast"]] testthat::expect_equal(results[["mv_data_3"]][["Rbeast"]], matrix(c( 701, 1301, 301, 1301, 1301, 301, 1301, 710, 301, 701, 1829, 301, 1968, 1993, 702, 886, 1994, 884, 1822, 1975, 814, 755, 810, 1915, 1962, 781, 845, 778, 1978, 767, 1738, 1985, 1870, 747, 1754, 792, 1843, 722, 771, 953 ), nrow = 10, ncol = 4, byrow = TRUE), tolerance = 0.2) results[["lm_data"]][["fastcpd"]] <- fastcpd::fastcpd.lm(lm_data, r.progress = FALSE)@cp_set results[["lm_data"]][["fastcpd"]] testthat::expect_equal(results[["lm_data"]][["fastcpd"]], c(97, 201), tolerance = 0.2) results[["lm_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = lm_data)$breakpoints results[["lm_data"]][["strucchange"]] testthat::expect_equal(results[["lm_data"]][["strucchange"]], c(100, 201), tolerance = 0.2) results[["lm_data"]][["segmented"]] <- segmented::segmented( lm( y ~ . - 1, data.frame(y = lm_data$y, x = lm_data[, -1], index = seq_len(nrow(lm_data))) ), seg.Z = ~ index )$psi[, "Est."] results[["lm_data"]][["segmented"]] testthat::expect_equal(results[["lm_data"]][["segmented"]], c(233), ignore_attr = TRUE, tolerance = 0.2) results[["binomial_data"]][["fastcpd"]] <- fastcpd::fastcpd.binomial(binomial_data, r.progress = FALSE)@cp_set results[["binomial_data"]][["fastcpd"]] testthat::expect_equal(results[["binomial_data"]][["fastcpd"]], 302, tolerance = 0.2) results[["binomial_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = binomial_data)$breakpoints results[["binomial_data"]][["strucchange"]] testthat::expect_equal(results[["binomial_data"]][["strucchange"]], 297, tolerance = 0.2) results[["poisson_data"]][["fastcpd"]] <- fastcpd::fastcpd.poisson(poisson_data, r.progress = FALSE)@cp_set results[["poisson_data"]][["fastcpd"]] testthat::expect_equal(results[["poisson_data"]][["fastcpd"]], c(498, 805, 1003), tolerance = 0.2) results[["poisson_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = poisson_data)$breakpoints results[["poisson_data"]][["strucchange"]] testthat::expect_equal(results[["poisson_data"]][["strucchange"]], 935, tolerance = 0.2) results[["lasso_data"]][["fastcpd"]] <- fastcpd::fastcpd.lasso(lasso_data, r.progress = FALSE)@cp_set results[["lasso_data"]][["fastcpd"]] testthat::expect_equal(results[["lasso_data"]][["fastcpd"]], c(79, 199, 320), tolerance = 0.2) results[["lasso_data"]][["strucchange"]] <- strucchange::breakpoints(y ~ . - 1, data = lasso_data)$breakpoints results[["lasso_data"]][["strucchange"]] testthat::expect_equal(results[["lasso_data"]][["strucchange"]], c(80, 200, 321), tolerance = 0.2) results[["ar_data"]][["fastcpd"]] <- fastcpd::fastcpd.ar(ar_data, 3, r.progress = FALSE)@cp_set results[["ar_data"]][["fastcpd"]] testthat::expect_equal(results[["ar_data"]][["fastcpd"]], c(614), tolerance = 0.2) results[["ar_data"]][["CptNonPar"]] <- CptNonPar::np.mojo(ar_data, G = floor(length(ar_data) / 6))$cpts results[["ar_data"]][["CptNonPar"]] testthat::expect_equal(results[["ar_data"]][["CptNonPar"]], numeric(0), tolerance = 0.2) results[["ar_data"]][["segmented"]] <- segmented::segmented( lm( y ~ x + 1, data.frame(y = ar_data, x = seq_along(ar_data)) ), seg.Z = ~ x )$psi[, "Est."] results[["ar_data"]][["segmented"]] testthat::expect_equal(results[["ar_data"]][["segmented"]], c(690), ignore_attr = TRUE, tolerance = 0.2) results[["ar_data"]][["mcp"]] <- mcp::mcp( list(y ~ 1 + ar(3), ~ 0 + ar(3)), data = data.frame(y = ar_data, x = seq_along(ar_data)), par_x = "x" ) if (requireNamespace("mcp", quietly = TRUE)) { plot(results[["ar_data"]][["mcp"]]) } results[["garch_data"]][["fastcpd"]] <- fastcpd::fastcpd.garch(garch_data, c(1, 1), r.progress = FALSE)@cp_set results[["garch_data"]][["fastcpd"]] testthat::expect_equal(results[["garch_data"]][["fastcpd"]], c(205), tolerance = 0.2) results[["garch_data"]][["CptNonPar"]] <- CptNonPar::np.mojo(garch_data, G = floor(length(garch_data) / 6))$cpts results[["garch_data"]][["CptNonPar"]] testthat::expect_equal(results[["garch_data"]][["CptNonPar"]], c(206), tolerance = 0.2) results[["garch_data"]][["strucchange"]] <- strucchange::breakpoints(x ~ 1, data = data.frame(x = garch_data))$breakpoints results[["garch_data"]][["strucchange"]] testthat::expect_equal(results[["garch_data"]][["strucchange"]], NA, tolerance = 0.2) results[["var_data"]][["fastcpd"]] <- fastcpd::fastcpd.var(var_data, 2, r.progress = FALSE)@cp_set results[["var_data"]][["fastcpd"]] testthat::expect_equal(results[["var_data"]][["fastcpd"]], c(500), tolerance = 0.2) results[["var_data"]][["VARDetect"]] <- VARDetect::tbss(var_data)$cp results[["var_data"]][["VARDetect"]] testthat::expect_equal(results[["var_data"]][["VARDetect"]], c(501), tolerance = 0.2) well_log <- fastcpd::well_log well_log <- well_log[well_log > 1e5] results[["well_log"]] <- list( fastcpd = fastcpd.mean(well_log, trim = 0.003)@cp_set, changepoint = changepoint::cpt.mean(well_log)@cpts, CptNonPar = CptNonPar::np.mojo(well_log, G = floor(length(well_log) / 6))$cpts, strucchange = strucchange::breakpoints( y ~ 1, data = data.frame(y = well_log) )$breakpoints, ecp = ecp::e.divisive(matrix(well_log))$estimates, breakfast = breakfast::breakfast(well_log)$cptmodel.list[[6]]$cpts, wbs = wbs::wbs(well_log)$cpt$cpt.ic$mbic.penalty, mosum = mosum::mosum(c(well_log), G = 40)$cpts.info$cpts, # fpop = fpop::Fpop(well_log, length(well_log))$t.est, # meaningless gfpop = gfpop::gfpop( data = well_log, mygraph = gfpop::graph( penalty = 2 * log(length(well_log)) * gfpop::sdDiff(well_log) ^ 2, type = "updown" ), type = "mean" )$changepoints, InspectChangepoint = InspectChangepoint::inspect( well_log, threshold = InspectChangepoint::compute.threshold(length(well_log), 1) )$changepoints[, "location"], jointseg = jointseg::jointSeg(well_log, K = 12)$bestBkp, Rbeast = Rbeast::beast( well_log, season = "none", print.progress = FALSE, quiet = TRUE )$trend$cp, stepR = stepR::stepFit(well_log, alpha = 0.5)$rightEnd ) results[["well_log"]] package_list <- sort(names(results[["well_log"]]), decreasing = TRUE) comparison_table <- NULL for (package_index in seq_along(package_list)) { package <- package_list[[package_index]] comparison_table <- rbind( comparison_table, data.frame( change_point = results[["well_log"]][[package]], package = package, y_offset = (package_index - 1) * 1000 ) ) } most_selected <- sort(table(comparison_table$change_point), decreasing = TRUE) most_selected <- sort(as.numeric(names(most_selected[most_selected >= 4]))) for (i in seq_len(length(most_selected) - 1)) { if (most_selected[i + 1] - most_selected[i] < 2) { most_selected[i] <- NA most_selected[i + 1] <- most_selected[i + 1] - 0.5 } } (most_selected <- most_selected[!is.na(most_selected)]) if (requireNamespace("ggplot2", quietly = TRUE)) { ggplot2::ggplot() + ggplot2::geom_point( data = data.frame(x = seq_along(well_log), y = c(well_log)), ggplot2::aes(x = x, y = y) ) + ggplot2::geom_vline( xintercept = most_selected, color = "black", linetype = "dashed", alpha = 0.2 ) + ggplot2::geom_point( data = comparison_table, ggplot2::aes(x = change_point, y = 50000 + y_offset, color = package), shape = 17, size = 1.9 ) + ggplot2::geom_hline( data = comparison_table, ggplot2::aes(yintercept = 50000 + y_offset, color = package), linetype = "dashed", alpha = 0.1 ) + ggplot2::coord_cartesian( ylim = c(50000 - 500, max(well_log) + 1000), xlim = c(-200, length(well_log) + 200), expand = FALSE ) + ggplot2::theme( panel.background = ggplot2::element_blank(), panel.border = ggplot2::element_rect(colour = "black", fill = NA), panel.grid.major = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank() ) + ggplot2::xlab(NULL) + ggplot2::ylab(NULL) } results[["microbenchmark"]] <- microbenchmark::microbenchmark( fastcpd = fastcpd::fastcpd.mean(well_log, trim = 0.003, r.progress = FALSE), changepoint = changepoint::cpt.mean(well_log, method = "PELT"), CptNonPar = CptNonPar::np.mojo(well_log, G = floor(length(well_log) / 6)), strucchange = strucchange::breakpoints(y ~ 1, data = data.frame(y = well_log)), ecp = ecp::e.divisive(matrix(well_log)), breakfast = breakfast::breakfast(well_log), wbs = wbs::wbs(well_log), mosum = mosum::mosum(c(well_log), G = 40), fpop = fpop::Fpop(well_log, nrow(well_log)), gfpop = gfpop::gfpop( data = well_log, mygraph = gfpop::graph( penalty = 2 * log(length(well_log)) * gfpop::sdDiff(well_log) ^ 2, type = "updown" ), type = "mean" ), InspectChangepoint = InspectChangepoint::inspect( well_log, threshold = InspectChangepoint::compute.threshold(length(well_log), 1) ), jointseg = jointseg::jointSeg(well_log, K = 12), Rbeast = Rbeast::beast( well_log, season = "none", print.progress = FALSE, quiet = TRUE ), stepR = stepR::stepFit(well_log, alpha = 0.5), not = not::not(well_log, contrast = "pcwsConstMean"), times = 10 ) results[["microbenchmark"]] if (requireNamespace("ggplot2", quietly = TRUE) && requireNamespace("microbenchmark", quietly = TRUE)) { ggplot2::autoplot(results[["microbenchmark"]]) } if (!file.exists("comparison-packages-results.RData")) { save(results, file = "comparison-packages-results.RData") } ```